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Bound-elecron g factor and the electron mass

Mainz-GSI collaboration HITRAP project

2000: 12C5+

Theory 2.001 041 590 18(3) Beier, Blundell, Czarnecki, Faustov, Indelicato,

Jentschura, Karshenboim, Lindgren, Martynenko,

Milstein, Pachucki, Sapirstein, Shabaev, Yerokhin

Experiment 2.001 041 596 3(10)(44) [N. Hermanspahn et al., PRL, 2000],

[H. Häffner et al., PRL, 2000]

ωL

ωc
=

g

2

|e|

q

mion

me
→ me = 0.000 548 579 909 32(29)u.

2004: 16O7+ [J. L. Verdú et al., PRL, 2004]

in progress: Si, Ca

planned: Pb, U
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Test of QED in heavy ions

g = gD(αZ) + ∆gQED(α, αZ) + ∆gnuc

α = 1/137.036... − fine structure constant

Z − nuclear charge

Vnuc(r) = −
αZ

r

Expansion in α is always employed.

Low-Z systems: αZ ≪ 1 → expansion in αZ .

High-Z systems: αZ ∼ 1 → no expansion in αZ .
Furry picture: Vnuc is taken into account to all orders.
Strong-field regime of QED.
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Present status of α determination

t • 1/α = 137.035 999 68(12) δα/α = 0.7 · 10−9

CODATA 2006

t • 1/α = 137.035 999 11(46) δα/α = 3.3 · 10−9

CODATA 2002

t • 1/α = 137.036 000 00(110)

transition frequencies in Cs
[V. Gerginov et al., PRA73, 032504 (2006)]

t • 1/α = 137.035 998 78(91)

transition frequencies in Rb
[P. Cladé et al., PRL96, 033001 (2006)]

t • 1/α = 137.035 998 80(52)

free-electron g factor (1987)
[R. S. Van Dyck et al., PRL59, 26 (1987)]

−2 −1 0 1

(1/α − 137.036 000) × 106
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Free-electron g factor

gfree = 2

(

1 +
α

π
A(2) +

(α

π

)2

A(4) + . . .

)

dgfree

dα
=

1

π

δα

α
= 2

(α

π

)

−1 δgfree

gfree
= 861.022 . . . ×

δgfree

gfree

δgexp
free

gfree
= 0.75 × 10−12 →

δα

α
= 0.7 × 10−9

gexp
free = 2.002 319 304 361 7(15) → 1/α = 137.035 999 71(10)

gexp
free = 2.002 319 304 361 5(6) → 1/α = 137.035 999 08(5)

[G. Gabrielse et al., PRL, 2006], [D. Hanneke et al., PRL, 2008]
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Bound-electron g factor

g1s =
2

3

(

2
√

1 − (αZ)2 + 1
)

+ ∆gQED + ∆gnuc

dg1s

dα
= −

4αZ2

3
√

1 − (αZ)2
v.s.

dgfree

dα
=

1

π

δα

α
=

3
√

1 − (αZ)2

2(αZ)2
δg1s

g1s
v.s.

δα

α
= 2

(α

π

)

−1 δgfree

gfree

Pb (Z = 82) : δgexp
1s = 0.7 × 10−9 →

δα

α
= 1.3 × 10−9

But
δgth is limited by the nuclear size and structure
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Nuclear size effect

One-electron relativistic value:

g =
2κ

j(j + 1)

mc

~

∫

∞

0

dr r3 g(r) f(r) → gD + ∆gNS

Dirac wavefunction:

Ψ(r) =

(

g(r)Ωκn(r̂)

if(r)Ωκn(r̂)

)

, κ =

(

j +
1

2

)

(−1)j+l+ 1

2

Dirac equation for bound electron:

~c
dg(r)

dr
+ ~c

1 + κ

r
g(r) −

(

ε + mc2 − V (r)
)

f(r) = 0

~c
df(r)

dr
+ ~c

1 − κ

r
f(r) +

(

ε − mc2 − V (r)
)

g(r) = 0
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Li-like ions

We have

~c
αZ

Rnuc
≫ |ε − mc2| ≈

(αZ)2

2n2
mc2

⇒ the binding energy in the Dirac equation can be neglected for r ≤ Rnuc.

~c
dg(r)

dr
+ ~c

1 + κ

r
g(r) −

(

2mc2 − V (r)
)

f(r) = 0

~c
df(r)

dr
+ ~c

1 − κ

r
f(r) + (−V (r)) g(r) = 0

This yields, in particular, for the states 1s and 2s:

(

g1(r)

f1(r)

)

≈ C12

(

g2(r)

f2(r)

)

for r . Rnuc
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Li-like ions

As a consequence, the parameter

ξ = ∆gNS[(1s)22s]/∆gNS[1s]

is rather insensitive to the nuclear model variations.
Let us introduce the specific difference

g′ = g[(1s)22s] − ξg[1s] .

g′ can be evaluated to much higher accuracy than g.

Advantage: elimination of the nuclear-size effect.

Drawback: large cancellation of the main α-dependent term.

→ significant reduction of the accuracy in α determination.
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B-like ions

For high Z we have

~c
αZ

Rnuc
≫ mc2

⇒ the electron rest energy can be neglected in the nuclear region.

~c
dg(r)

dr
+ ~c

1 + κ

r
g(r) + V (r)f(r) = 0

~c
df(r)

dr
+ ~c

1 − κ

r
f(r) − V (r)g(r) = 0

Symmetry: κ → −κ, g → f , f → −g.
It yields, in particular, for the states 1s and 2p1/2:

(

g1(r)

f1(r)

)

≈ C12

(

f2(r)

−g2(r)

)

for r . Rnuc
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B-like ions

Let us introduce again

ξ = ∆gNS[(1s)2(2s)22p1/2]/∆gNS[1s]

and the specific difference

g′ = g[(1s)2(2s)22p1/2] − ξg[1s]

g′ can be evaluated to much higher accuracy than g.

Advantages:

elimination of the nuclear-size effect.

no significant cancellation of the main α-dependent term.
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g factor of B-like Pb

The nuclear size effect on the g factor of B-like Pb was investigated numerically,

including the 1/Z interelectronic interaction and the α/π QED corrections.

ξ = 0.009 741 6 , δξ = 0.000 000 25 .

Uncertainty of g′ due to the nuclear effects and the fine structure constant:

Contribution δg′/g′

1/α = 137.035 999 11 (46) 8.7 × 10−10

Nuclear size 2.9 × 10−10

Nuclear polarization 1.0 × 10−10

[V.M. Shabaev et al., PRL, 2006]
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Theoretical status

To achieve the required theoretical accuracy for the g factor necessitates a number of
elaborate evaluations:

• Interelectronic interaction
⊲ [1/Z ] one-photon exchange

⊲ [1/Z2] two-photon exchange
⊲ higher orders: large-scale CI-DFS

• QED
⊲ [α] one-loop QED

+ effective potential
+ one-photon screening

⊲ [α2] two-loop QED
+ effective potential

⊲ [α3] three-loop QED
• recoil effect

+ effective potential
+ QED corrections
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Interelectronic interaction

∆gint =
1

Z
B(αZ) +

1

Z2
C(αZ) + . . .

1

Z
:

1/Z2 and higher:
large-scale configuration-interaction Dirac-Fock-Sturm method
Basis: 12s 11p 10d 6f 4g 2h 1i

[V. M. Shabaev et al., PRA, 2002], [D. A. Glazov et al., PRA, 2004]
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Interelectronic interaction

Two-photon exchange
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One-loop QED corrections

α

π
:

∆gQED = ∆gSE + ∆gVP = 2
α

π
A(2)(αZ)

A(2)(αZ) =
1

2
+

(αZ)2

12
+ . . .

To all orders in αZ :
[V. A. Yerokhin et al., PRA, 2004], [K. Pachucki et al., PRA, 2005]
[R. N. Lee et al., PRA, 2005]
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Many-electron one-loop QED corrections

Screened self-energy

(A1) (A2) (B) (C1) (C2)

(D) (E1) (E2) (F )
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Many-electron one-loop QED corrections

Screened vacuum-polarization
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Many-electron one-loop QED corrections

• Two-time Green function method

• Finite basis set: DKB B-splines

• Feynman and Coulomb gauges

∆gA,B,E[UV] ∼
i

2π

∫

dω
∑

n1

〈Xn1|I(ω)|n1Y 〉

(εa − ω − ε−n1
)

∆gC1[UV, IR] ∼
i

2π

∫

dω
∑

n1,2

〈Xn1|I(ω)|n2a〉〈n2|T0|n1〉

(εa − ω − ε−n1
)(εa − ω − ε−n2

)

∆gC2[UV, IR] ∼
i

2π

∫

dω
∑

n1,2

〈Xn1|I(ω)|n2a〉〈n2b|I(∆)|n1b〉

(εa − ω − ε−n1
)(εa − ω − ε−n2

)

∆gD[IR] ∼
i

2π

∫

dω
∑

n1,2,3

〈an1|I(ω)|n3a〉〈n3b|I(∆)|n2b〉〈n2|T0|n1〉

(εa − ω − ε−n1
)(εa − ω − ε−n2

)(εa − ω − ε−n3
)
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g factor of Li-like Pb

Dirac value (point nucleus) 1.932 002 904

Interelectronic interaction 0.002 140 7 (27)

QED, one-loop 0.002 411 7 (1)

QED, two-loop -0.000 003 6 (5)

-0.000 003 5 (12)

QED, screening -0.000 001 8 (2)

Recoil 0.000 000 2 (3)

Nuclear size 0.000 078 6 (1)

Nuclear polarization -0.000 000 04 (2)

1.936 627 0 (30)

Total theory 1.936 628 7 (28)

[A. V. Volotka, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, G. Plunien, PRL, 2009]
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Conclusion and Outlook

⋆ Experimental and theoretical investigations of the bound-electron g factor
in heavy highly charged ions will provide
→ an independent determination of the fine structure constant α
→ accurate tests of QED in strong Coulomb field

⋆ A significant step towards high theoretical accuracy:
→ screened self-energy diagrams
→ screened vacuum-polarization diagrams (Uehling approximation)
have been evaluated.

⋆ Next step is to evaluate:
→ two-photon exchange diagrams
→ screened vacuum-polarization diagrams (complete)
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