Many electron QED effects in the g factor of heavy ions

Dmitry A. Glazov, Andrey V. Volotka, Vladimir M. Shabaev,

Ilja I. Tupitsyn, Günter Plunien

St. Petersburg State University Institut für Theoretische Physik, TU Dresden

Outline

- Motivation
- Determination of α
 - Free-electron v.s. bound-electron g factor
 - Li-like ions
 - B-like ions
- Status of the theoretical value
 - Interelectronic interaction
 - One-electron QED corrections
 - Many-electron QED corrections
- Conclusion

Bound-electron g factor and the electron mass

Mainz-GSI collaboration		HITRAP project
2000: ¹² C ⁵⁺		
Theory	2.001 041 590 18(3)	Beier, Blundell, Czarnecki, Faustov, Indelicato,
		Jentschura, Karshenboim, Lindgren, Martynenko,
		Milstein, Pachucki, Sapirstein, Shabaev, Yerokhin
Experiment	2.001 041 596 3(10)(44)	[N. Hermanspahn et al., PRL, 2000],
		[H. Häffner et al., PRL, 2000]

$$\frac{\omega_L}{\omega_c} = \frac{g}{2} \frac{|e|}{q} \frac{m_{\text{ion}}}{m_e} \to m_e = 0.000\ 548\ 579\ 909\ 32(29)\text{u}.$$

2004: ¹⁶O⁷⁺ [J. L. Verdú et al., PRL, 2004]

in progress: Si, Ca

planned: Pb, U

Test of QED in heavy ions

$$g = g_{\rm D}(\alpha Z) + \Delta g_{\rm QED}(\alpha, \alpha Z) + \Delta g_{\rm nuc}$$

 $\alpha = 1/137.036... - \text{fine structure constant}$ Z - nuclear charge $V_{\text{nuc}}(r) = -\frac{\alpha Z}{r}$

Expansion in α is always employed.

Low-Z systems: $\alpha Z \ll 1 \rightarrow \text{expansion in } \alpha Z$.

High-Z systems: $\alpha Z \sim 1 \rightarrow$ no expansion in αZ . Furry picture: $V_{\rm nuc}$ is taken into account to all orders. Strong-field regime of QED.

Present status of α determination

- $1/\alpha = 137.035\ 999\ 68(12)$ $\delta \alpha / \alpha = 0.7 \cdot 10^{-9}$ CODATA 2006
- $1/\alpha = 137.035\ 999\ 11(46)$ $\delta \alpha / \alpha = 3.3 \cdot 10^{-9}$ CODATA 2002
- 1/α = 137.036 000 00(110) transition frequencies in Cs
 [V. Gerginov et al., PRA 73, 032504 (2006)]
- 1/α = 137.035 998 78(91) transition frequencies in Rb
 [P. Cladé et al., PRL 96, 033001 (2006)]
- 1/α = 137.035 998 80(52)
 free-electron g factor (1987)
 [R. S. Van Dyck et al., PRL 59, 26 (1987)]

Free-electron g factor

$$g_{\rm free} = 2\left(1 + \frac{\alpha}{\pi}A^{(2)} + \left(\frac{\alpha}{\pi}\right)^2A^{(4)} + \dots\right)$$
$$\frac{\mathrm{d}g_{\rm free}}{\mathrm{d}\alpha} = \frac{1}{\pi}$$
$$\frac{\delta\alpha}{\alpha} = 2\left(\frac{\alpha}{\pi}\right)^{-1}\frac{\delta g_{\rm free}}{g_{\rm free}} = 861.022\ldots\times\frac{\delta g_{\rm free}}{g_{\rm free}}$$
$$\frac{\delta g_{\rm free}^{\mathrm{exp}}}{g_{\rm free}} = 0.75\times10^{-12} \rightarrow \frac{\delta\alpha}{\alpha} = 0.7\times10^{-9}$$

 $\begin{array}{l} g_{\rm free}^{\rm exp} = \text{2.002 319 304 361 7(15)} \rightarrow 1/\alpha = \text{137.035 999 71(10)} \\ g_{\rm free}^{\rm exp} = \text{2.002 319 304 361 5(6)} \rightarrow 1/\alpha = \text{137.035 999 08(5)} \end{array}$

[G. Gabrielse et al., PRL, 2006], [D. Hanneke et al., PRL, 2008]

Bound-electron g factor

$$g_{1s} = \frac{2}{3} \left(2\sqrt{1 - (\alpha Z)^2} + 1 \right) + \Delta g_{\text{QED}} + \Delta g_{\text{nuc}}$$

$$\frac{\mathrm{d}g_{1s}}{\mathrm{d}\alpha} = -\frac{4\alpha Z^2}{3\sqrt{1-(\alpha Z)^2}} \qquad \text{v.s.} \qquad \frac{\mathrm{d}g_{\mathrm{free}}}{\mathrm{d}\alpha} = \frac{1}{\pi}$$

$$\frac{\delta\alpha}{\alpha} = \frac{3\sqrt{1 - (\alpha Z)^2}}{2(\alpha Z)^2} \frac{\delta g_{1s}}{g_{1s}} \qquad \text{v.s.} \qquad \frac{\delta\alpha}{\alpha} = 2\left(\frac{\alpha}{\pi}\right)^{-1} \frac{\delta g_{\text{free}}}{g_{\text{free}}}$$

Pb (Z = 82): $\delta g_{1s}^{\exp} = 0.7 \times 10^{-9} \rightarrow \frac{\delta \alpha}{\alpha} = 1.3 \times 10^{-9}$

But δg^{th} is limited by the nuclear size and structure

Nuclear size effect

One-electron relativistic value:

$$g = \frac{2\kappa}{j(j+1)} \frac{mc}{\hbar} \int_0^\infty \mathrm{d}r \, r^3 \, g(r) \, f(r) \to g_\mathrm{D} + \Delta g_\mathrm{NS}$$

Dirac wavefunction:

$$\Psi(r) = \begin{pmatrix} g(r)\Omega_{\kappa n}(\hat{r})\\ if(r)\Omega_{\overline{\kappa}n}(\hat{r}) \end{pmatrix}, \quad \kappa = \left(j + \frac{1}{2}\right)(-1)^{j+l+\frac{1}{2}}$$

Dirac equation for bound electron:

$$\hbar c \, \frac{\mathrm{d}g(r)}{\mathrm{d}r} + \hbar c \, \frac{1+\kappa}{r} \, g(r) - \left(\varepsilon + mc^2 - V(r)\right) f(r) = 0$$
$$\hbar c \, \frac{\mathrm{d}f(r)}{\mathrm{d}r} + \hbar c \, \frac{1-\kappa}{r} \, f(r) + \left(\varepsilon - mc^2 - V(r)\right) g(r) = 0$$

Li-like ions

We have

$$\hbar c \frac{\alpha Z}{R_{\rm nuc}} \gg |\varepsilon - mc^2| \approx \frac{(\alpha Z)^2}{2n^2} mc^2$$

 \Rightarrow the binding energy in the Dirac equation can be neglected for $r \leq R_{
m nuc}$.

$$\hbar c \, \frac{\mathrm{d}g(r)}{\mathrm{d}r} + \hbar c \, \frac{1+\kappa}{r} \, g(r) - \left(2mc^2 - V(r)\right) f(r) = 0$$
$$\hbar c \, \frac{\mathrm{d}f(r)}{\mathrm{d}r} + \hbar c \, \frac{1-\kappa}{r} \, f(r) + \left(-V(r)\right) g(r) = 0$$

This yields, in particular, for the states 1s and 2s:

$$\begin{pmatrix} g_1(r) \\ f_1(r) \end{pmatrix} \approx C_{12} \begin{pmatrix} g_2(r) \\ f_2(r) \end{pmatrix} \quad \text{for} \ r \lesssim R_{\text{nuc}}$$

Li-like ions

As a consequence, the parameter

 $\xi = \Delta g_{\rm NS}[(1s)^2 2s] / \Delta g_{\rm NS}[1s]$

is rather insensitive to the nuclear model variations. Let us introduce the specific difference

 $g' = g[(1s)^2 2s] - \xi g[1s].$

g' can be evaluated to much higher accuracy than g.

Advantage: elimination of the nuclear-size effect.

Drawback: large cancellation of the main α -dependent term.

 \rightarrow significant reduction of the accuracy in α determination.

B-like ions

For high Z we have

 \Rightarrow the electron rest energy can be neglected in the nuclear region.

$$\hbar c \, \frac{\mathrm{d}g(r)}{\mathrm{d}r} + \hbar c \, \frac{1+\kappa}{r} \, g(r) + V(r)f(r) = 0$$
$$\hbar c \, \frac{\mathrm{d}f(r)}{\mathrm{d}r} + \hbar c \, \frac{1-\kappa}{r} \, f(r) - V(r)g(r) = 0$$

Symmetry: $\kappa \to -\kappa$, $g \to f$, $f \to -g$. It yields, in particular, for the states 1s and $2p_{1/2}$:

$$\begin{pmatrix} g_1(r) \\ f_1(r) \end{pmatrix} \approx C_{12} \begin{pmatrix} f_2(r) \\ -g_2(r) \end{pmatrix} \quad \text{for } r \lesssim R_{\text{nuc}}$$

B-like ions

Let us introduce again

$$\xi = \Delta g_{\rm NS}[(1s)^2 (2s)^2 2p_{1/2}] / \Delta g_{\rm NS}[1s]$$

and the specific difference

$$g' = g[(1s)^2(2s)^2 2p_{1/2}] - \xi g[1s]$$

g' can be evaluated to much higher accuracy than g.

Advantages:

elimination of the nuclear-size effect.

no significant cancellation of the main α -dependent term.

g factor of B-like Pb

The nuclear size effect on the g factor of B-like Pb was investigated numerically, including the 1/Z interelectronic interaction and the α/π QED corrections.

 $\xi = 0.009\ 741\ 6$, $\delta\xi = 0.000\ 000\ 25$.

Uncertainty of g' due to the nuclear effects and the fine structure constant:

Contribution	$\delta g'/g'$
$1/\alpha = 137.03599911(46)$	8.7×10^{-10}
Nuclear size	2.9×10^{-10}
Nuclear polarization	1.0×10^{-10}

[V.M. Shabaev et al., PRL, 2006]

Theoretical status

To achieve the required theoretical accuracy for the g factor necessitates a number of elaborate evaluations:

- Interelectronic interaction
 ▷ [1/Z] one-photon exchange
 ▷ [1/Z²] two-photon exchange
 ▷ higher orders: large-scale CI-DFS
 QED
 - $\triangleright \left[\alpha \right] \text{ one-loop QED }$
 - $+ {\rm \, effective \,\, potential}$
 - + one-photon screening
 - \triangleright [α^2] two-loop QED
 - $+ {\rm \, effective \,\, potential}$
 - \triangleright [α^3] three-loop QED
- recoil effect
 - + effective potential
 - + QED corrections

Interelectronic interaction

$$\Delta g_{\text{int}} = \frac{1}{Z} B(\alpha Z) + \frac{1}{Z^2} C(\alpha Z) + \dots$$

$$\frac{1}{Z}:$$

 $1/Z^2$ and higher: large-scale configuration-interaction Dirac-Fock-Sturm method Basis: $12s\;11p\;10d\;6f\;4g\;2h\;1i$

[V. M. Shabaev et al., PRA, 2002], [D. A. Glazov et al., PRA, 2004]

Interelectronic interaction

Two-photon exchange

One-loop QED corrections

$$\Delta g_{\text{QED}} = \Delta g_{\text{SE}} + \Delta g_{\text{VP}} = 2\frac{\alpha}{\pi}A^{(2)}(\alpha Z)$$
$$A^{(2)}(\alpha Z) = \frac{1}{2} + \frac{(\alpha Z)^2}{12} + \dots$$

To all orders in αZ : [V. A. Yerokhin et al., PRA, 2004], [K. Pachucki et al., PRA, 2005] [R. N. Lee et al., PRA, 2005]

Many-electron one-loop QED corrections

Screened self-energy

Many-electron one-loop QED corrections

Screened vacuum-polarization

Many-electron one-loop QED corrections

- Two-time Green function method
- Finite basis set: DKB B-splines
- Feynman and Coulomb gauges

$$\begin{split} \Delta g^{\mathrm{A,B,E}}[\mathrm{UV}] &\sim \frac{i}{2\pi} \int \mathrm{d}\omega \sum_{n_1} \frac{\langle Xn_1 | I(\omega) | n_1 Y \rangle}{(\varepsilon_a - \omega - \varepsilon_{n_1}^-)} \\ \Delta g^{\mathrm{C1}}[\mathrm{UV,IR}] &\sim \frac{i}{2\pi} \int \mathrm{d}\omega \sum_{n_{1,2}} \frac{\langle Xn_1 | I(\omega) | n_2 a \rangle \langle n_2 | T_0 | n_1 \rangle}{(\varepsilon_a - \omega - \varepsilon_{n_1}^-)(\varepsilon_a - \omega - \varepsilon_{n_2}^-)} \\ \Delta g^{\mathrm{C2}}[\mathrm{UV,IR}] &\sim \frac{i}{2\pi} \int \mathrm{d}\omega \sum_{n_{1,2}} \frac{\langle Xn_1 | I(\omega) | n_2 a \rangle \langle n_2 b | I(\Delta) | n_1 b \rangle}{(\varepsilon_a - \omega - \varepsilon_{n_1}^-)(\varepsilon_a - \omega - \varepsilon_{n_2}^-)} \\ \Delta g^{\mathrm{D}}[\mathrm{IR}] &\sim \frac{i}{2\pi} \int \mathrm{d}\omega \sum_{n_{1,2,3}} \frac{\langle an_1 | I(\omega) | n_3 a \rangle \langle n_3 b | I(\Delta) | n_2 b \rangle \langle n_2 | T_0 | n_1 \rangle}{(\varepsilon_a - \omega - \varepsilon_{n_1}^-)(\varepsilon_a - \omega - \varepsilon_{n_2}^-)(\varepsilon_a - \omega - \varepsilon_{n_3}^-)} \end{split}$$

g factor of Li-like Pb

1.932 002 904
0.002 140 7 (27)
0.002 411 7 (1)
-0.000 003 6 (5)
-0.000 003 5 (12)
-0.000 001 8 (2)
0.000 000 2 (3)
0.000 078 6 (1)
-0.000 000 04 (2)
1.936 627 0 (30)
1.936 628 7 <mark>(28</mark>)

[A. V. Volotka, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, G. Plunien, PRL, 2009]

Conclusion and Outlook

 \star Experimental and theoretical investigations of the bound-electron g factor in heavy highly charged ions will provide

- \rightarrow an independent determination of the fine structure constant α
- \rightarrow accurate tests of QED in strong Coulomb field
- ★ A significant step towards high theoretical accuracy:
- \rightarrow screened self-energy diagrams

 \rightarrow screened vacuum-polarization diagrams (Uehling approximation) have been evaluated.

- ★ Next step is to evaluate:
- \rightarrow two-photon exchange diagrams
- \rightarrow screened vacuum-polarization diagrams (complete)